Science and Nature

Computational strategies and challenges in single-cell knowledge integration

  • 1.

    Navin, N. E. The first 5 years of single-cell most cancers genomics and beyond. Genome Res. 25, 1499–1507 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 2.

    Peng, G., Cui, G., Ke, J. & Jing, N. Utilizing single-cell and spatial transcriptomes to procedure halt stem cell lineage specification at some level of early embryo pattern. Annu. Rev. Genomics Hum. Genet. 21, 163–181 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 3.

    Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility, DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

  • 4.

    Ma, S. et al. Chromatin doable known by shared single-cell profiling of RNA and chromatin. Cell https://doi.org/10.1016/j.cell.2020.09.056 (2020).

  • 5.

    Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Techniques 14, 865–868 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 6.

    Angermueller, C. et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Techniques 13, 229–232 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 7.

    Swanson, E. et al. TEA-seq: a trimodal assay for integrated single cell measurement of transcription, epitopes, and chromatin accessibility. Preprint at bioRxiv https://doi.org/10.1101/2020.09.04.283887 (2020).

  • 8.

    Stuart, T. & Satija, R. Integrative single-cell diagnosis. Nat. Rev. Genet. 20, 257–272 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 9.

    Macaulay, I. C., Ponting, C. P. & Voet, T. Single-cell multiomics: more than one measurements from single cells. Developments Genet. 33, 155–168 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 10.

    Chappell, L., Russell, A. J. C. & Voet, T. Single-cell (multi) omics technologies. Annu. Rev. Genomics Hum. Genet. 19, 15–41 (2018).

    CAS 
    Article 

    Google Student
     

  • 11.

    Hao, Y., Hao, S., Andersen-Nissen, E. & Mauck, W. M. Built-in diagnosis of multimodal single-cell knowledge. Preprint at bioRxiv https://doi.org/10.1101/2020.10.12.335331 (2020).

  • 12.

    Forcato, M., Romano, O. & Bicciato, S. Computational strategies for the integrative diagnosis of single-cell knowledge. Transient. Bioinform. 22, 20–29 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 13.

    Ma, A., McDermaid, A., Xu, J., Chang, Y. & Ma, Q. Integrative strategies and wise challenges for single-cell multi-omics. Developments Biotechnol. 38, 1007–1022 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 14.

    Colomé-Tatché, M. & Theis, F. J. Statistical single cell multi-omics integration. Curr. Opin. Syst. Biol. 7, 54–59 (2018).

    Article 

    Google Student
     

  • 15.

    Lähnemann, D. et al. Eleven gargantuan challenges in single-cell knowledge science. Genome Biol. 21, 31 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 16.

    Cheow, L. F. et al. Single-cell multimodal profiling unearths cell epigenetic heterogeneity. Nat. Techniques 13, 833–836 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 17.

    Chen, S., Lake, B. B. & Zhang, Good ample. Excessive-throughput sequencing of the transcriptome and chromatin accessibility in the identical cell. Nat. Biotechnol. https://doi.org/10.1038/s41587-019-0290-0 (2019).

  • 18.

    Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

  • 19.

    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray evaluate. Nucleic Acids Res. 43, e47 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 20.

    Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression knowledge the exhaust of empirical Bayes strategies. Biostatistics 8, 118–127 (2007).

    Article 

    Google Student
     

  • 21.

    Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing knowledge are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 22.

    Stuart, T. et al. Comprehensive integration of single-cell knowledge. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 23.

    Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts points of brain cell identity. Cell 177, 1873–1887 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 24.

    Korsunsky, I. et al. Quick, sensitive and lawful integration of single-cell knowledge with Harmony. Nat. Techniques 16, 1289–1296 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 25.

    Polański, Good ample. et al. BBKNN: speedily batch alignment of single cell transcriptomes. Bioinformatics 36, 964–965 (2020).

    PubMed 
    PubMed Central 

    Google Student
     

  • 26.

    Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Techniques 15, 1053–1058 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 27.

    Barkas, N. et al. Joint diagnosis of heterogeneous single-cell RNA-seq dataset collections. Nat. Techniques 16, 695–698 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 28.

    Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq knowledge at some level of knowledge objects. Nat. Techniques 15, 359–362 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 29.

    Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes the exhaust of Scanorama. Nat. Biotechnol. 37, 685–691 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 30.

    Johansen, N. & Quon, G. scAlign: a instrument for alignment, integration, and uncommon cell identification from scRNA-seq knowledge. Genome Biol. 20, 166 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 31.

    Luecken, M. D. et al. Benchmarking atlas-stage knowledge integration in single-cell genomics. Preprint at bioRxiv https://doi.org/10.1101/2020.05.22.111161 (2020).

  • 32.

    Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 33.

    Cantini, L. et al. Benchmarking joint multi-omics dimensionality good deal approaches for the take a look at out of most cancers. Nat. Commun. 12, 124 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 34.

    Buettner, F., Pratanwanich, N., McCarthy, D. J., Marioni, J. C. & Stegle, O. f-scLVM: scalable and versatile part diagnosis for single-cell RNA-seq. Genome Biol. 18, 212 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 35.

    Nica, A. C. & Dermitzakis, E. T. Expression quantitative trait loci: picture and future. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120362 (2013).

    Article 
    CAS 

    Google Student
     

  • 36.

    Westra, H.-J. & Franke, L. From genome to unbiased by finding out eQTLs. Biochim. Biophys. Acta 1842, 1896–1902 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 37.

    Hu, Y. et al. Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol. 17, 88 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 38.

    Liu, L. et al. Deconvolution of single-cell multi-omics layers unearths regulatory heterogeneity. Nat. Commun. 10, 470 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 39.

    Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in hundreds of single cells. Science 361, 1380–1385 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 40.

    Packer, J. & Trapnell, C. Single-cell multi-omics: an engine for stamp spanking original quantitative gadgets of gene regulation. Developments Genet. 34, 653–665 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 41.

    Zhou, X. & Stephens, M. Genome-broad efficient blended-model diagnosis for affiliation evaluate. Nat. Genet. 44, 821–824 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 42.

    Lippert, C. et al. FaST linear blended gadgets for genome-broad affiliation evaluate. Nat. Techniques 8, 833–835 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 43.

    Yu, J. et al. A unified blended-model procedure for affiliation mapping that accounts for more than one levels of relatedness. Nat. Genet. 38, 203–208 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 44.

    Label, A. L., Zaitlen, N. A., Reich, D. & Patterson, N. New approaches to population stratification in genome-broad affiliation evaluate. Nat. Rev. Genet. 11, 459–463 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 45.

    Henderson, C. R. Purposes of Linear Units in Animal Breeding Univ. Guelph (1984).

  • 46.

    Loh, P.-R. et al. Efficient Bayesian blended-model diagnosis increases affiliation energy in massive cohorts. Nat. Genet. 47, 284–290 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 47.

    Furlotte, N. A., Kang, H. M., Ye, C. & Eskin, E. Blended-model coexpression: calculating gene coexpression while accounting for expression heterogeneity. Bioinformatics 27, i288–i294 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 48.

    Stegle, O., Elements, L., Piipari, M., Winn, J. & Durbin, R. Utilizing probabilistic estimation of expression residuals (PEER) to construct elevated energy and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 49.

    Fairfax, B. P. et al. Genetics of gene expression in necessary immune cells identifies cell model–whisper master regulators and roles of HLA alleles. Nat. Genet. 44, 502–510 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 50.

    van der Wijst, M. G. P. et al. Single-cell RNA sequencing identifies celltype-whisper cis-eQTLs and co-expression QTLs. Nat. Genet. 50, 493–497 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 51.

    Cuomo, A. S. E. et al. Single-cell RNA-sequencing of differentiating iPS cells unearths dynamic genetic effects on gene expression. Nat. Commun. 11, 810 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 52.

    Strober, B. J. et al. Dynamic genetic regulation of gene expression at some level of cell differentiation. Science 364, 1287–1290 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 53.

    Wills, Q. F. et al. Single-cell gene expression diagnosis unearths genetic associations masked in whole-tissue experiments. Nat. Biotechnol. 31, 748–752 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 54.

    Sarkar, A. Good ample. et al. Discovery and characterization of variance QTLs in human introduced on pluripotent stem cells. PLoS Genet. 15, e1008045 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 55.

    van der Wijst, M. et al. The one-cell eQTLGen consortium. eLife 9, e52155 (2020).

  • 56.

    Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing the exhaust of natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 57.

    Jerber, J. et al. Inhabitants-scale single-cell RNA-seq profiling at some level of dopaminergic neuron differentiation. Nat. Genet. 53, 304–312 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 58.

    Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic displays. Cell 167, 1853–1866 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 59.

    Rubin, A. J. et al. Coupled single-cell CRISPR screening and epigenomic profiling unearths causal gene regulatory networks. Cell 176, 361–376 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 60.

    Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Techniques 14, 297–301 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 61.

    Schraivogel, D. et al. Targeted Perturb-seq enables genome-scale genetic displays in single cells. Nat. Techniques 17, 629–635 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 62.

    Gasperini, M. et al. A genome-broad framework for mapping gene regulation by job of cell genetic displays. Cell 176, 1516 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 63.

    Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Techniques 16, 409–412 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 64.

    Argelaguet, R. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 65.

    Argelaguet, R. et al. MOFA+: a statistical framework for whole integration of multi-modal single-cell knowledge. Genome Biol. 21, 111 (2020).

  • 66.

    Ma, S. et al. Chromatin doable known by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 67.

    Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-part-associated accessibility from single-cell epigenomic knowledge. Nat. Techniques 14, 975–978 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 68.

    Xu, C., Tao, D. & Xu, C. A peek on multi-be aware studying. Preprint at https://arxiv.org/abs/1304.5634 (2013).

  • 69.

    Argelaguet, R. et al. Multi-Omics Component Prognosis—a framework for unsupervised integration of multi-omics knowledge objects. Mol. Syst. Biol. 14, e8124 (2018).

  • 70.

    Lock, E. F., Hoadley, Good ample. A., Marron, J. S. & Nobel, A. B. Joint and Particular person Variation Defined (JIVE) for integrated diagnosis of more than one knowledge sorts. Ann. Appl. Stat. 7, 523–542 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 71.

    Singh, A. et al. DIABLO: an integrative methodology for identifying key molecular drivers from multi-omics assays. Bioinformatics 35, 3055–3062 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 72.

    Meng, C., Kuster, B., Culhane, A. C. & Gholami, A. A multivariate methodology to the integration of multi-omics datasets. BMC Bioinformatics 15, 162 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 73.

    Klami, A., Virtanen, S., Leppäaho, E. & Kaski, S. Neighborhood part diagnosis. IEEE Trans. Neural Netw. Be taught. Syst. 26, 2136–2147 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 74.

    Granja, J. M. et al. Single-cell multiomic diagnosis identifies regulatory programs in blended-phenotype acute leukemia. Nat. Biotechnol. 37, 1458–1465 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 75.

    Luo, C. et al. Single nucleus multi-omics links human cortical cell regulatory genome diversity to illness possibility variants. Preprint at bioRxiv https://doi.org/10.1101/2019.12.11.873398 (2019).

  • 76.

    Wang, C. et al. Integrative analyses of single-cell transcriptome and regulome the exhaust of MAESTRO. Genome Biol. 21, 198 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 77.

    Welch, J. D., Hartemink, A. J. & Prins, J. F. MATCHER: manifold alignment unearths correspondence between single cell transcriptome and epigenome dynamics. Genome Biol. 18, 138 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 78.

    Liu, J., Huang, Y., Singh, R., Vert, J.-P. & Noble, W. S. Jointly embedding more than one single-cell omics measurements. Preprint at bioRxiv https://doi.org/10.1101/644310 (2019).

  • 79.

    Zheng, H. et al. Scandalous-area fault diagnosis the exhaust of data transfer system: a evaluate. IEEE Bring together entry to 7, 129260–129290 (2019).

    Article 

    Google Student
     

  • 80.

    Ruder, S., Peters, M. E., Swayamdipta, S. & Wolf, T. Switch studying in natural language processing. in Proceedings of the 2019 Convention of the North American Chapter of the Affiliation for Computational Linguistics: Tutorials 15–18 https://doi.org/10.18653/v1/n19-5004 (2019).

  • 81.

    Wang, J. et al. Recordsdata denoising with transfer studying in single-cell transcriptomics. Nat. Techniques 16, 875–878 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 82.

    Lieberman, Y., Rokach, L. & Shay, T. CaSTLe—classification of single cells by transfer studying: harnessing the power of publicly available single cell RNA sequencing experiments to annotate original experiments. PLoS ONE 13, e0205499 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 83.

    Lotfollahi, M., Naghipourfar, M., Luecken, M. D. & Khajavi, M. Inquire of to reference single-cell integration with transfer studying. Preprint at bioRxiv https://doi.org/10.1101/2020.07.16.205997 (2020).

  • 84.

    Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

  • 85.

    Eng, C.-H. L., Shah, S., Thomassie, J. & Cai, L. Profiling the transcriptome with RNA SPOTs. Nat. Techniques 14, 1153–1155 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 86.

    Chen, Good ample. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, extremely multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 87.

    Giacomello, S. et al. Spatially resolved transcriptome profiling in model plant species. Nat. Vegetation 3, 17061 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 88.

    Pijuan-Sala, B. et al. A single-cell molecular scheme of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 89.

    Marioni, J. C. & Arendt, D. How single-cell genomics is changing evolutionary and developmental biology. Annu. Rev. Cell Dev. Biol. 33, 537–553 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 90.

    Shafer, M. E. R. Scandalous-species diagnosis of single-cell transcriptomic knowledge. Front. Cell Dev. Biol. 7, 175 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 91.

    Vintsyuk, T. Good ample. Speech discrimination by dynamic programming. Cybernetics 4, 52–57 (1972).

    Article 

    Google Student
     

  • 92.

    Cacchiarelli, D. et al. Aligning single-cell developmental and reprogramming trajectories identifies molecular determinants of myogenic reprogramming final outcome. Cell Syst. 7, 258–268 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 93.

    Alpert, A., Moore, L. S., Dubovik, T. & Shen-Orr, S. S. Alignment of single-cell trajectories to compare cell expression dynamics. Nat. Techniques 15, 267–270 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 94.

    Arrangement, V. H. et al. Dynamic pseudo-time warping of complex single-cell trajectories. Preprint at bioRxiv https://doi.org/10.1101/522672 (2019).

  • 95.

    Velten, B., Braunger, J. M., Arnol, D., Argelaguet, R. & Stegle, O. Figuring out temporal and spatial patterns of variation from multi-modal knowledge the exhaust of MEFISTO. Preprint at bioRxiv https://doi.org/10.1101/2020.11.03.366674 (2020).

  • 96.

    Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-whisper points of brain pattern. Nature 574, 418–422 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 97.

    Gabaldón, T. & Koonin, E. V. Handy and evolutionary implications of gene orthology. Nat. Rev. Genet. 14, 360–366 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 98.

    Arendt, D. et al. The origin and evolution of cell sorts. Nat. Rev. Genet. 17, 744–757 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 99.

    Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. gkab043 (2021).

  • 100.

    Chidester, B., Zhou, T. & Ma, J. SpiceMix: integrative single-cell spatial modeling for inferring cell identity. Preprint at bioRxiv https://doi.org/10.1101/2020.11.29.383067 (2021).

  • 101.

    Kleshchevnikov, V. et al. Comprehensive mapping of tissue cell architecture by job of integrated single cell and spatial transcriptomics. Preprint at bioRxiv https://doi.org/10.1101/2020.11.15.378125 (2020).

  • 102.

    Andersson, A. et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell model topography. Commun. Biol. 3, 565 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 103.

    Cable, D. M. et al. Sturdy decomposition of cell model mixtures in spatial transcriptomics. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00830-w (2021).

  • 104.

    Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of spatially variable genes. Nat. Techniques 15, 343–346 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 105.

    Arnol, D., Schapiro, D., Bodenmiller, B., Saez-Rodriguez, J. & Stegle, O. Modeling cell–cell interactions from spatial molecular knowledge with spatial variance part diagnosis. Cell Bring together. 29, 202–211 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 106.

    Rood, J. E. et al. In direction of a general coordinate framework for the human body. Cell 179, 1455–1467 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 107.

    Camp, J. G., Platt, R. & Treutlein, B. Mapping human cell phenotypes to genotypes with single-cell genomics. Science 365, 1401–1405 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 108.

    Nieto, P., Elosua-Bayes, M. M., Trincado, J. L. & Marchese, D. A single-cell tumor immune atlas for precision oncology. Preprint at bioRxiv https://doi.org/10.1101/2020.10.26.354829 (2020).

  • 109.

    Keener, A. B. Single-cell sequencing edges into clinical trials. Nat. Med. 25, 1322–1326 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 110.

    Rajewsky, N. et al. LifeTime and adorning European healthcare by cell-based solely interceptive remedy. Nature https://doi.org/10.1038/s41586-020-2715-9 (2020).

  • 111.

    Shalek, A. Good ample. & Benson, M. Single-cell analyses to tailor therapies. Sci. Transl. Med. 9, eaan4730 (2017).

  • 112.

    Hotelling, H. Relatives between two objects of variates. Biometrika 28, 321–377 (1936).

    Article 

    Google Student
     

  • 113.

    Meng, C. et al. Dimension good deal strategies for the integrative diagnosis of multi-omics knowledge. Transient. Bioinform. 17, 628–641 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 114.

    Jin, S., Zhang, L. & Nie, Q. scAI: an unmonitored methodology for the integrative diagnosis of parallel single-cell transcriptomic and epigenomic profiles. Genome Biol. 21, 25 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 115.

    Stark, S. G. et al. SCIM: widespread single-cell matching with unpaired characteristic objects. Bioinformatics 36, i919–i927 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 116.

    Cao, Good ample., Bai, X., Hong, Y. & Wan, L. Unsupervised topological alignment for single-cell multi-omics integration. Bioinformatics 36, i48–i56 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 117.

    Duren, Z. et al. Integrative diagnosis of single-cell genomics knowledge by coupled nonnegative matrix factorizations. Proc. Natl Acad. Sci. USA 115, 7723–7728 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 118.

    Rosenberg, A. B. et al. Single-cell profiling of the creating mouse brain and spinal wire with split-pool barcoding. Science 360, 176–182 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 119.

    Zeisel, A. et al. Molecular architecture of the mouse worried device. Cell 174, 999–1014 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 120.

    Saunders, A. et al. Molecular diversity and specializations among the cells of the grownup mouse brain. Cell 174, 1015–1030 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 121.

    Vieira Braga, F. A. et al. A cell census of human lungs identifies original cell states in health and in bronchial asthma. Nat. Med. 25, 1153–1163 (2019).

    CAS 
    Article 

    Google Student
     

  • 122.

    Travaglini, Good ample. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 123.

    Wang, A. et al. Single-cell multiomic profiling of human lungs unearths cell-model-whisper and age-dynamic control of SARS-CoV2 host genes. eLife 9, e62522 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 124.

    Muraro, M. J. et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 3, 385–394 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 125.

    Lawlor, M. et al. Single-cell transcriptomes name human islet cell signatures and picture cell-model-whisper expression changes in model 2 diabetes. Genome Res. 27, 208–222 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 126.

    Segerstolpe, Å. et al. Single-cell transcriptome profiling of human pancreatic islets in health and kind 2 diabetes. Cell Metab. 24, 593–607 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 127.

    Baron, M. et al. A single-cell transcriptomic scheme of the human and mouse pancreas unearths inter- and intra-cell population development. Cell Syst. 3, 346–360 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 128.

    Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 129.

    Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, eaba7612 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 130.

    Bravo González-Blas, C. et al. Identification of genomic enhancers by spatial integration of single‐cell transcriptomics and epigenomics. Mol. Syst. Biol. 16, e9438 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 131.

    Pijuan-Sala, B. et al. Single-cell chromatin accessibility maps picture regulatory programs driving early mouse organogenesis. Nat. Cell Biol. 22, 487–497 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 132.

    Preisel, S. et al. Single-nucleus diagnosis of accessible chromatin in creating mouse forebrain unearths cell-model-whisper transcriptional regulation. Nat. Neurosci. 21, 432–439 (2018).

    Article 
    CAS 

    Google Student
     

  • 133.

    Luo, C. et al. Single-cell methylomes name neuronal subtypes and regulatory parts in mammalian cortex. Science 357, 600–604 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 134.

    Lee, D.-S. et al. Simultaneous profiling of 3D genome development and DNA methylation in single human cells. Nat. Techniques 16, 999–1006 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 135.

    Johnstone, I. M. & Titterington, D. M. Statistical challenges of high-dimensional datal. Philos. Trans. A Math. Phys. Eng. Sci. 367, 4237–4253 (2009).

    PubMed 
    PubMed Central 

    Google Student
     

  • 136.

    Guo, F. et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res. 27, 967–988 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 137.

    Hicks, S. C., Townes, F. W., Teng, M. & Irizarry, R. A. Missing knowledge and technical variability in single-cell RNA-sequencing experiments. Biostatistics 19, 562–578 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 138.

    Buettner, F. et al. Computational diagnosis of cell-to-cell heterogeneity in single-cell RNA-sequencing knowledge unearths hidden subpopulations of cells. Nat. Biotechnol. 33, 155–160 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 139.

    Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell RNA-seq in the previous decade. Nat. Protoc. 13, 599–604 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 140.

    Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 141.

    Vallejos, C. A., Marioni, J. C. & Richardson, S. BASiCS: Bayesian diagnosis of single-cell sequencing knowledge. PLoS Comput. Biol. 11, e1004333 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 142.

    Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian methodology to single-cell differential expression diagnosis. Nat. Techniques 11, 740–742 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • Related Articles

    Back to top button