Science and Nature

MHC class II tetramers engineered for enhanced binding to CD4 toughen detection of antigen-particular T cells

Abstract

The capability to title T cells that peep particular peptide antigens inch to predominant histocompatibility advanced (MHC) molecules has enabled enumeration and molecular characterization of the lymphocytes accountable for cell-mediated immunity. Fluorophore-labeled peptide:MHC class I (p:MHCI) tetramers are successfully-established reagents for identifying antigen-particular CD8+ T cells by waft cytometry, but efforts to elongate the methodology to CD4+ T cells have been less winning, perchance owing to decrease binding strength between CD4 and MHC class II (MHCII) molecules. Right here we mumble that p:MHCII tetramers engineered by directed evolution for enhanced CD4 binding outperform gentle tetramers for the detection of cognate T cells. The use of the engineered tetramers, we identified about twice as many antigen-particular CD4+ T cells in mice immunized in opposition to a pair of peptides than when utilizing frail tetramers. CD4 affinity-enhanced p:MHCII tetramers, attributable to this fact, enable relate sampling of antigen-particular CD4+ T cells that can not be accessed with gentle p:MHCII tetramer know-how. These contemporary reagents could well also present a deeper notion of the T cell repertoire.

References

  1. 1.

    Xiong, Y., Kern, P., Chang, H. & Reinherz, E. T cell receptor binding to a pMHCII ligand is dinetically distinct from and self sufficient of CD4. J. Biol. Chem. 276, 5659–5667 (2001).

    CAS 
    Article 

    Google Student
     

  2. 2.

    Jonsson, P. et al. Remarkably low affinity of CD4/peptide-predominant histocompatibility advanced class II protein interactions. Proc. Natl Acad. Sci. USA 113, 5682–5687 (2016).

    CAS 
    Article 

    Google Student
     

  3. 3.

    Martinez, R. J., Andargachew, R., Martinez, H. A. & Evavold, B. D. Low-affinity CD4+ T cells are predominant responders in the most indispensable immune response. Nat. Commun. 7, 13848 (2016).

    CAS 
    Article 

    Google Student
     

  4. 4.

    Davis, M. M. T cell receptor gene diversity and replacement. Annu. Rev. Biochem. 59, 475–496 (1990).

    CAS 
    Article 

    Google Student
     

  5. 5.

    Rudolph, M. G., Stanfield, R. L. & Wilson, I. A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466 (2006).

    CAS 
    Article 

    Google Student
     

  6. 6.

    Altman, J. D. et al. Phenotypic diagnosis of antigen-particular T lymphocytes. Science 274, 94–96 (1996).

    CAS 
    Article 

    Google Student
     

  7. 7.

    Doherty, P. C. The tetramer transformation. J. Immunol. 187, 5–6 (2011).

    CAS 
    Article 

    Google Student
     

  8. 8.

    Crawford, F., Kozono, H., White, J., Marrack, P. & Kappler, J. Detection of antigen-particular T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8, 675–682 (1998).

    CAS 
    Article 

    Google Student
     

  9. 9.

    Wang, X. X. et al. Affinity maturation of human CD4 by yeast floor mumble and crystal building of a CD4-HLA-DR1 advanced. Proc. Natl Acad. Sci. USA 108, 15960–15965 (2011).

    CAS 
    Article 

    Google Student
     

  10. 10.

    Govern, C. C., Paczosa, M. Ok., Chakraborty, A. Ok. & Huseby, E. S. Immediate on-rates enable quick dwell time ligands to suggested T cells. Proc. Natl Acad. Sci. USA 107, 8724–8729 (2010).

    CAS 
    Article 

    Google Student
     

  11. 11.

    Mortensen, R. Overview of gene targeting by homologous recombination. Curr. Protoc. Mol. Biol. Chapter 23.1, Unit 23.1 (2006).

  12. 12.

    Kolawole, E. M., Andargachew, R., Liu, B., Jacobs, J. R. & Evavold, B. D. 2D kinetic diagnosis of TCR and CD8 coreceptor for LCMV GP33 epitopes. Entrance. Immunol. 9, 2348 (2018).

    Article 

    Google Student
     

  13. 13.

    Oxenius, A., Bachmann, M. F., Zinkernagel, R. M. & Hengartner, H. Virus-particular MHC-class II-restricted TCR-transgenic mice: outcomes on humoral and mobile immune responses after viral an infection. Eur. J. Immunol. 28, 390–400 (1998).

    CAS 
    Article 

    Google Student
     

  14. 14.

    Oxenius, A. et al. Presentation of endogenous viral proteins in affiliation with predominant histocompatibility advanced class II: on the impartial of intracellular compartmentalization, invariant chain and the TAP transporter procedure. Eur. J. Immunol. 25, 3402–3411 (1995).

    CAS 
    Article 

    Google Student
     

  15. 15.

    Nelson, R. W. et al. T cell receptor bad-reactivity between identical international and self peptides influences naive cell inhabitants dimension and autoimmunity. Immunity 42, 95–107 (2015).

    CAS 
    Article 

    Google Student
     

  16. 16.

    Wyer, J. R. et al. T cell receptor and coreceptor CD8 alphaalpha bind peptide-MHC independently and with distinct kinetics. Immunity 10, 219–225 (1999).

    CAS 
    Article 

    Google Student
     

  17. 17.

    Rees, W. et al. An inverse relationship between T cell receptor affinity and antigen dose all over CD4+ T cell responses in vivo and in vitro. Proc. Natl Acad. Sci. USA 96, 9781–9786 (1999).

    CAS 
    Article 

    Google Student
     

  18. 18.

    Moon, J. J. et al. Naive CD4+ T cell frequency varies for varied epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007).

    CAS 
    Article 

    Google Student
     

  19. 19.

    Robertson, J. M., Jensen, P. E. & Evavold, B. D. DO11.10 and OT-II T cells peep a C-terminal ovalbumin 323–339 epitope. J. Immunol. 164, 4706–4712 (2000).

    CAS 
    Article 

    Google Student
     

  20. 20.

    Malhotra, D. et al. Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, primarily based entirely on self-peptide expression patterns. Nat. Immunol. 17, 187–195 (2016).

    CAS 
    Article 

    Google Student
     

  21. 21.

    Masteller, E. L. et al. Peptide-MHC class II dimers as therapeutics to modulate antigen-particular T cell responses in autoimmune diabetes. J. Immunol. 171, 5587–5595 (2003).

    CAS 
    Article 

    Google Student
     

  22. 22.

    Stratmann, T. et al. Prone MHC alleles, no longer background genes, consume an autoimmune T cell reactivity. J. Clin. Make investments. 112, 902–914 (2003).

    CAS 
    Article 

    Google Student
     

  23. 23.

    Huang, J. et al. Detection, phenotyping, and quantification of antigen-particular T cells utilizing a peptide-MHC dodecamer. Proc. Natl Acad. Sci. USA 113, E1890–E1897 (2016).

    CAS 
    Article 

    Google Student
     

  24. 24.

    Williams, T. et al. Pattern of T cell traces nonetheless to antigen stimulation. J. Immunol. Suggestions 462, 65–73 (2018).

    CAS 
    Article 

    Google Student
     

  25. 25.

    Slavin, A. et al. Induction of a a pair of sclerosis-cherish disease in mice with an immunodominant epitope of myelin oligodendrocyte glycoprotein. Autoimmunity 28, 109–120 (1998).

    CAS 
    Article 

    Google Student
     

  26. 26.

    Bunch, T. A., Grinblat, Y. & Goldstein, L. S. Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res. 16, 1043–1061 (1988).

    CAS 
    Article 

    Google Student
     

  27. 27.

    Moon, J. J. et al. Quantitative affect of thymic replacement on Foxp3+ and Foxp3 subsets of self-peptide/MHC class II-particular CD4+ T cells. Proc. Natl Acad. Sci. USA 108, 14602–14607 (2011).

    CAS 
    Article 

    Google Student
     

  28. 28.

    Kotov, D. I. et al. TCR affinity biases Th cell differentiation by regulating CD25, Eef1e1, and Gbp2. J. Immunol. 202, 2535–2545 (2019).

    CAS 
    Article 

    Google Student
     

  29. 29.

    Choi, Y. S. et al. Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capability to kind memory. J. Immunol. 190, 4014–4026 (2013).

    CAS 
    Article 

    Google Student
     

Salvage references

Acknowledgements

This work was as soon as supported by National Institutes of Successfully being grants R01 AI143826 and R01 AI039614 to M.Ok.J., F32 AI114050 to D.M., T32 AI083196 and T32 AI007313 to D.I.Ok. and R01 AI096879 to B.D.E.

Writer files

Writer notes

  1. Deepali Malhotra

    Most up-to-date address: AstraZeneca, Gaithersburg, MD, USA

  2. Dmitri I. Kotov

    Most up-to-date address: College of California, Berkeley, Berkeley, CA, USA

Affiliations

  1. Division of Microbiology and Immunology, Heart for Immunology, College of Minnesota Medical Faculty, Minneapolis, MN, USA

    Thamotharampillai Dileepan, Deepali Malhotra, Dmitri I. Kotov, Peter D. Krueger & Marc Ok. Jenkins

  2. Division of Pathology, Microbiology and Immunology, College of Utah, Salt Lake City, UT, USA

    Elizabeth M. Kolawole & Brian D. Evavold

Contributions

T.D., D.M., D.I.Ok., P.D.Ok., and E.M.Ok. designed and performed experiments and edited the manuscript. B.D.E. designed experiments and edited the manuscript. M.Ok.J. designed experiments and wrote the manuscript.

Corresponding creator

Correspondence to
Marc Ok. Jenkins.

Ethics declarations

Ethics

Experiments have been accredited by the College of Minnesota Institutional Animal Care and Expend Committee and conducted in retaining with its policies.

Competing pursuits

M.Ok.J, T.D. and D.M. are co-inventors on a patent application preserving CD4 affinity enhanced p:MHCII tetramers owned by Regents of the College of Minnesota (#PCT/US19/44605 – Co-receptor affinity enhanced predominant histocompatibility class II molecules).

Additional files

Look for review files Nature Biotechnology thanks Lawrence Stern and the assorted, nameless, reviewer(s) for his or her contribution to the peer review of this work.

Publisher’s mumble Springer Nature remains neutral with regard to jurisdictional claims in printed maps and institutional affiliations.

Supplementary files

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dileepan, T., Malhotra, D., Kotov, D.I. et al. MHC class II tetramers engineered for enhanced binding to CD4 toughen detection of antigen-particular T cells.
Nat Biotechnol (2021). https://doi.org/10.1038/s41587-021-00893-9

Salvage citation

Related Articles

Back to top button